3,5-Diiodo-L-thyronine rapidly enhances mitochondrial fatty acid oxidation rate and thermogenesis in rat skeletal muscle: AMP-activated protein kinase involvement.
نویسندگان
چکیده
Triiodothyronine regulates energy metabolism and thermogenesis. Among triiodothyronine derivatives, 3,5-diiodo-l-thyronine (T(2)) has been shown to exert marked effects on energy metabolism by acting mainly at the mitochondrial level. Here we investigated the capacity of T(2) to affect both skeletal muscle mitochondrial substrate oxidation and thermogenesis within 1 h after its injection into hypothyroid rats. Administration of T(2) induced an increase in mitochondrial oxidation when palmitoyl-CoA (+104%), palmitoylcarnitine (+80%), or succinate (+30%) was used as substrate, but it had no effect when pyruvate was used. T(2) was able to 1) activate the AMPK-ACC-malonyl-CoA metabolic signaling pathway known to direct lipid partitioning toward oxidation and 2) increase the importing of fatty acids into the mitochondrion. These results suggest that T(2) stimulates mitochondrial fatty acid oxidation by activating several metabolic pathways, such as the fatty acid import/beta-oxidation cycle/FADH(2)-linked respiratory pathways, where fatty acids are imported. T(2) also enhanced skeletal muscle mitochondrial thermogenesis by activating pathways involved in the dissipation of the proton-motive force not associated with ATP synthesis ("proton leak"), the effect being dependent on the presence of free fatty acids inside mitochondria. We conclude that skeletal muscle is a target for T(2), and we propose that, by activating processes able to enhance mitochondrial fatty acid oxidation and thermogenesis, T(2) could play a role in protecting skeletal muscle against excessive intramyocellular lipid storage, possibly allowing it to avoid functional disorders.
منابع مشابه
3,5-diiodothyronine rapidly enhances mitochondrial fatty acid oxidation rate and thermogenesis in rat skeletal muscle: AMP-activated protein kinase involvement
Triiodothyronine regulates energy metabolism and thermogenesis. Among triiodothyronine derivatives, 3,5-diiodo-L-thyronine (T2) has been shown to exert marked effects on energy metabolism by acting mainly at the mitochondrial level. Here we investigated the capacity of T2 to affect both skeletal muscle mitochondrial substrate oxidation and thermogenesis within 1 hour after its injection into hy...
متن کاملRegulation of skeletal muscle mitochondrial activity by thyroid hormones: focus on the “old” triiodothyronine and the “emerging” 3,5-diiodothyronine
3,5,3'-Triiodo-L-thyronine (T3) plays a crucial role in regulating metabolic rate and fuel oxidation; however, the mechanisms by which it affects whole-body energy metabolism are still not completely understood. Skeletal muscle (SKM) plays a relevant role in energy metabolism and responds to thyroid state by remodeling the metabolic characteristics and cytoarchitecture of myocytes. These proces...
متن کاملNonthyrotoxic Prevention of Diet-Induced Insulin Resistance by 3,5-Diiodo-L-Thyronine in Rats
OBJECTIVE High-fat diets (HFDs) are known to induce insulin resistance. Previously, we showed that 3,5-diiodothyronine (T2), concomitantly administered to rats on a 4-week HFD, prevented gain in body weight and adipose mass. Here we investigated whether and how T2 prevented HFD-induced insulin resistance. RESEARCH DESIGN AND METHODS We investigated the biochemical targets of T2 related to lip...
متن کامل3,5-Diiodo-L-Thyronine Administration To Hypothyroid Rats Rapidly Enhances Fatty Acid Oxidation Rate and Bioenergetic Parameters in Liver Cells
Growing evidence shows that, among triiodothyronine derivatives, 3,5 diiodo-L-thyronine (T(2)) plays an important role in energy metabolism and fat storage. In the present study, short-term effects of T(2) administration to hypothyroid rats on fatty acid oxidation rate and bioenergetic parameters were investigated. Within 1 h following T(2) injection, state 3 and state 4 respiration rates, whic...
متن کامل3,5-Diiodo-L-Thyronine Activates Brown Adipose Tissue Thermogenesis in Hypothyroid Rats
3,5-Diiodo-l-thyronine (T2), a thyroid hormone derivative, is capable of increasing energy expenditure, as well as preventing high fat diet-induced overweight and related metabolic dysfunction. Most studies to date on T2 have been carried out on liver and skeletal muscle. Considering the role of brown adipose tissue (BAT) in energy and metabolic homeostasis, we explored whether T2 could activat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Endocrinology and metabolism
دوره 296 3 شماره
صفحات -
تاریخ انتشار 2009